3.1045 \(\int \frac {(A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=303 \[ \frac {\left (4 a^2 (A+2 C)-4 a b B+3 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {a+b \cos (c+d x)}}-\frac {(3 A b-4 a B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{4 a^2 d}+\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {(A b-4 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \cos (c+d x)}}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 a d} \]

[Out]

1/4*(3*A*b-4*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b
))^(1/2))*(a+b*cos(d*x+c))^(1/2)/a^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-1/4*(A*b-4*B*a)*(cos(1/2*d*x+1/2*c)^2)^(
1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a
/d/(a+b*cos(d*x+c))^(1/2)+1/4*(3*A*b^2-4*a*b*B+4*a^2*(A+2*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a^2/d/(a+b*cos(d*x+c))
^(1/2)-1/4*(3*A*b-4*B*a)*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/a^2/d+1/2*A*sec(d*x+c)*(a+b*cos(d*x+c))^(1/2)*tan(d
*x+c)/a/d

________________________________________________________________________________________

Rubi [A]  time = 1.02, antiderivative size = 303, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.209, Rules used = {3055, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac {\left (4 a^2 (A+2 C)-4 a b B+3 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {a+b \cos (c+d x)}}-\frac {(3 A b-4 a B) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{4 a^2 d}+\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {(A b-4 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \cos (c+d x)}}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

((3*A*b - 4*a*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*a^2*d*Sqrt[(a + b*Cos[c +
d*x])/(a + b)]) - ((A*b - 4*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(4*
a*d*Sqrt[a + b*Cos[c + d*x]]) + ((3*A*b^2 - 4*a*b*B + 4*a^2*(A + 2*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*Elli
pticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(4*a^2*d*Sqrt[a + b*Cos[c + d*x]]) - ((3*A*b - 4*a*B)*Sqrt[a + b*Cos[c
+ d*x]]*Tan[c + d*x])/(4*a^2*d) + (A*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*a*d)

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx &=\frac {A \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 a d}+\frac {\int \frac {\left (\frac {1}{2} (-3 A b+4 a B)+a (A+2 C) \cos (c+d x)+\frac {1}{2} A b \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a}\\ &=-\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a^2 d}+\frac {A \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 a d}+\frac {\int \frac {\left (\frac {1}{4} \left (3 A b^2-4 a b B+4 a^2 (A+2 C)\right )+\frac {1}{2} a A b \cos (c+d x)+\frac {1}{4} b (3 A b-4 a B) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a^2 d}+\frac {A \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 a d}-\frac {\int \frac {\left (-\frac {1}{4} b \left (3 A b^2-4 a b B+4 a^2 (A+2 C)\right )+\frac {1}{4} a b (A b-4 a B) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a^2 b}+\frac {(3 A b-4 a B) \int \sqrt {a+b \cos (c+d x)} \, dx}{8 a^2}\\ &=-\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a^2 d}+\frac {A \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 a d}-\frac {(A b-4 a B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 a}+\frac {\left (3 A b^2-4 a b B+4 a^2 (A+2 C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 a^2}+\frac {\left ((3 A b-4 a B) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{8 a^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\\ &=\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a^2 d}+\frac {A \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 a d}-\frac {\left ((A b-4 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 a \sqrt {a+b \cos (c+d x)}}+\frac {\left (\left (3 A b^2-4 a b B+4 a^2 (A+2 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 a^2 \sqrt {a+b \cos (c+d x)}}\\ &=\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {(A b-4 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \cos (c+d x)}}+\frac {\left (3 A b^2-4 a b B+4 a^2 (A+2 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a^2 d \sqrt {a+b \cos (c+d x)}}-\frac {(3 A b-4 a B) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a^2 d}+\frac {A \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.53, size = 424, normalized size = 1.40 \[ \frac {\frac {2 \left (8 a^2 (A+2 C)-12 a b B+9 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+4 \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)} ((4 a B-3 A b) \cos (c+d x)+2 a A)+\frac {2 i (3 A b-4 a B) \csc (c+d x) \sqrt {-\frac {b (\cos (c+d x)-1)}{a+b}} \sqrt {\frac {b (\cos (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+\frac {8 a A b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}}{16 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

((8*a*A*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] +
 (2*(9*A*b^2 - 12*a*b*B + 8*a^2*(A + 2*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)
/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + ((2*I)*(3*A*b - 4*a*B)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*
(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Co
s[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a
 + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a -
 b)])))/(a*b*Sqrt[-(a + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*(2*a*A + (-3*A*b + 4*a*B)*Cos[c + d*x])*Sec[c +
 d*x]*Tan[c + d*x])/(16*a^2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{3}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)^3/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 6.23, size = 1282, normalized size = 4.23 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B*(-1/a*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1
/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*co
s(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(
cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))
^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^
(1/2))+1/2/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^
4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*b*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*
c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))-2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*
d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1
/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))+2*A*(-1/2/a*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*
x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^2+3/4*b/a^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*s
in(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)-1/8*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2
*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1
/2*c),(-2*b/(a-b))^(1/2))+3/8/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*
sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-3/
8*b^2/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b
+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/
2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-3/8/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/
2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x
+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{3}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)^3/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^3\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(a + b*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)**3/sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________